Show simple item record

dc.contributor.authorKitouni, Ouail
dc.contributor.authorNachman, Benjamin
dc.contributor.authorWeisser, Constantin
dc.contributor.authorWilliams, Mike
dc.date.accessioned2021-11-01T14:33:34Z
dc.date.available2021-11-01T14:33:34Z
dc.date.issued2021-04-08
dc.identifier.urihttps://hdl.handle.net/1721.1/136816
dc.description.abstractAbstract A key challenge in searches for resonant new physics is that classifiers trained to enhance potential signals must not induce localized structures. Such structures could result in a false signal when the background is estimated from data using sideband methods. A variety of techniques have been developed to construct classifiers which are independent from the resonant feature (often a mass). Such strategies are sufficient to avoid localized structures, but are not necessary. We develop a new set of tools using a novel moment loss function (Moment Decomposition or MoDe) which relax the assumption of independence without creating structures in the background. By allowing classifiers to be more flexible, we enhance the sensitivity to new physics without compromising the fidelity of the background estimation.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP04(2021)070en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleEnhancing searches for resonances with machine learning and moment decompositionen_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2021 Apr 08;2021(4):70en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Science
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.contributor.departmentStatistics and Data Science Center (Massachusetts Institute of Technology)
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-04-11T03:14:14Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2021-04-11T03:14:14Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record