MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Hilbert eigenvariety at exotic and CM classical weight 1 points

Author(s)
Betina, Adel; Deo, Shaunak V.; Fité, Francesc
Thumbnail
Download209_2020_2626_ReferencePDF.pdf (459.7Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Let F be a totally real number field and let f be a classical cuspidal p-regular Hilbert modular eigenform over F of parallel weight 1. Let x be the point on the p-adic Hilbert eigenvariety $${\mathcal {E}}$$ E corresponding to an ordinary p-stabilization of f. We show that if the p-adic Schanuel conjecture is true, then $${\mathcal {E}}$$ E is smooth at x if f has CM. If we additionally assume that $$F/\mathbb {Q}$$ F / Q is Galois, we show that the weight map is étale at x if f has either CM or exotic projective image (which is the case for almost all cuspidal Hilbert modular eigenforms of parallel weight 1). We prove these results by showing that the completed local ring of the eigenvariety at x is isomorphic to a universal nearly ordinary Galois deformation ring.
Date issued
2020-10-31
URI
https://hdl.handle.net/1721.1/136894
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.