Show simple item record

dc.contributor.authorBetina, Adel
dc.contributor.authorDeo, Shaunak V.
dc.contributor.authorFité, Francesc
dc.date.accessioned2021-11-01T14:34:02Z
dc.date.available2021-11-01T14:34:02Z
dc.date.issued2020-10-31
dc.identifier.urihttps://hdl.handle.net/1721.1/136894
dc.description.abstractAbstract Let F be a totally real number field and let f be a classical cuspidal p-regular Hilbert modular eigenform over F of parallel weight 1. Let x be the point on the p-adic Hilbert eigenvariety $${\mathcal {E}}$$ E corresponding to an ordinary p-stabilization of f. We show that if the p-adic Schanuel conjecture is true, then $${\mathcal {E}}$$ E is smooth at x if f has CM. If we additionally assume that $$F/\mathbb {Q}$$ F / Q is Galois, we show that the weight map is étale at x if f has either CM or exotic projective image (which is the case for almost all cuspidal Hilbert modular eigenforms of parallel weight 1). We prove these results by showing that the completed local ring of the eigenvariety at x is isomorphic to a universal nearly ordinary Galois deformation ring.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00209-020-02626-1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleOn the Hilbert eigenvariety at exotic and CM classical weight 1 pointsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-07-06T03:26:36Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2021-07-06T03:26:36Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record