Show simple item record

dc.contributor.authorZadik, Ilias
dc.contributor.authorPolyanskiy, Yury
dc.contributor.authorThrampoulidis, Christos
dc.date.accessioned2021-11-01T18:27:40Z
dc.date.available2021-11-01T18:27:40Z
dc.date.issued2019-09
dc.date.submitted2019-07
dc.identifier.urihttps://hdl.handle.net/1721.1/137030
dc.description.abstract© 2019 IEEE. We consider the Gaussian multiple-access channel with two critical departures from the classical asymptotics: a) number of users proportional to block-length and b) each user sends a fixed number of data bits. We provide improved bounds on the tradeoff between the user density and the energy-per-bit. Interestingly, in this information-theoretic problem we rely on Gordon's lemma from Gaussian process theory. From the engineering standpoint, we discover a surprising new effect: good coded-access schemes can achieve perfect multi-user interference cancellation at low user density.In addition, by a similar method we analyze the limits of false-discovery in binary sparse regression problem in the asymptotic regime of number of measurements going to infinity at fixed ratios with problem dimension, sparsity and noise level. Our rigorous bound matches the formal replica-method prediction for some range of parameters with imperceptible numerical precision.en_US
dc.description.sponsorshipNSF (Awards CCF-12-53205, CCF- 17-17842)en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ISIT.2019.8849764en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleImproved bounds on Gaussian MAC and sparse regression via Gaussian inequalitiesen_US
dc.typeArticleen_US
dc.identifier.citationZadik, Ilias, Polyanskiy, Yury and Thrampoulidis, Christos. 2019. "Improved bounds on Gaussian MAC and sparse regression via Gaussian inequalities." IEEE International Symposium on Information Theory - Proceedings, 2019-July.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalIEEE International Symposium on Information Theory - Proceedingsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-04-15T15:15:02Z
dspace.orderedauthorsZadik, I; Polyanskiy, Y; Thrampoulidis, Cen_US
dspace.date.submission2021-04-15T15:15:03Z
mit.journal.volume2019-Julyen_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record