MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Food and liquid sensing in practical environments using RFIDs

Author(s)
Ha, U; Leng, J; Khaddaj, A; Adib, Fadel
Thumbnail
DownloadAccepted version (11.77Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We present the design and implementation of RF-EATS, a system that can sense food and liquids in closed containers without opening them or requiring any contact with their contents. RF-EATS uses passive backscatter tags (e.g., RFIDs) placed on a container, and leverages near-field coupling between a tag's antenna and the container contents to sense them noninvasively. In contrast to prior proposals that are invasive or require strict measurement conditions, RF-EATS is noninvasive and does not require any calibration; it can robustly identify contents in practical indoor environments and generalize to unseen environments. These capabilities are made possible by a learning framework that adapts recent advances in variational inference to the RF sensing problem. The framework introduces an RF kernel and incorporates a transfer model that together allow it to generalize to new contents in a sample-efficient manner, enabling users to extend it to new inference tasks using a small number of measurements. We built a prototype of RF-EATS and tested it in seven different applications including identifying fake medicine, adulterated baby formula, and counterfeit beauty products. Our results demonstrate that RF-EATS can achieve over 90% classification accuracy in scenarios where state-of-the-art RFID sensing systems cannot perform better than a random guess.
Date issued
2020
URI
https://hdl.handle.net/1721.1/137146
Department
Massachusetts Institute of Technology. Media Laboratory; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2020
Citation
Ha, U, Leng, J, Khaddaj, A and Adib, F. 2020. "Food and liquid sensing in practical environments using RFIDs." Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2020.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.