MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Moduli spaces of sheaves on surfaces: Hecke correspondences and representation theory

Author(s)
Neguţ, A
Thumbnail
DownloadAccepted version (415.8Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© Springer Nature Switzerland AG 2019. In modern terms, enumerative geometry is the study of moduli spaces: instead of counting various geometric objects, one describes the set of such objects, which if lucky enough to enjoy good geometric properties is called a moduli space. For example, the moduli space of linear subspaces of 𝔸n is the Grassmannian variety, which is a classical object in representation theory. Its cohomology and intersection theory (as well as those of its more complicated cousins, the flag varieties) have long been studied in connection with the Lie algebras 𝔰 𝔩 n.
Date issued
2019
URI
https://hdl.handle.net/1721.1/137152
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer International Publishing
Citation
Neguţ, A. 2019. "Moduli spaces of sheaves on surfaces: Hecke correspondences and representation theory." 2248.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.