Show simple item record

dc.contributor.authorNeguţ, A
dc.date.accessioned2021-11-02T18:12:18Z
dc.date.available2021-11-02T18:12:18Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/137152
dc.description.abstract© Springer Nature Switzerland AG 2019. In modern terms, enumerative geometry is the study of moduli spaces: instead of counting various geometric objects, one describes the set of such objects, which if lucky enough to enjoy good geometric properties is called a moduli space. For example, the moduli space of linear subspaces of 𝔸n is the Grassmannian variety, which is a classical object in representation theory. Its cohomology and intersection theory (as well as those of its more complicated cousins, the flag varieties) have long been studied in connection with the Lie algebras 𝔰 𝔩 n.en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionof10.1007/978-3-030-26856-5_2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleModuli spaces of sheaves on surfaces: Hecke correspondences and representation theoryen_US
dc.typeBook chapteren_US
dc.identifier.citationNeguţ, A. 2019. "Moduli spaces of sheaves on surfaces: Hecke correspondences and representation theory." 2248.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/BookItemen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-05-25T13:57:56Z
dspace.orderedauthorsNeguţ, Aen_US
dspace.date.submission2021-05-25T13:57:57Z
mit.journal.volume2248en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record