Show simple item record

dc.contributor.authorKar, Amlan
dc.contributor.authorPrakash, Aayush
dc.contributor.authorLiu, Ming-Yu
dc.contributor.authorCameracci, Eric
dc.contributor.authorYuan, Justin
dc.contributor.authorRusiniak, Matt
dc.contributor.authorAcuna, David
dc.contributor.authorTorralba, Antonio
dc.contributor.authorFidler, Sanja
dc.date.accessioned2022-03-21T14:33:52Z
dc.date.available2021-11-03T14:07:51Z
dc.date.available2022-03-21T14:33:52Z
dc.date.issued2020-02
dc.date.submitted2019-10
dc.identifier.issn978-1-7281-4803-8
dc.identifier.issn2380-7504
dc.identifier.urihttps://hdl.handle.net/1721.1/137178.2
dc.description.abstract© 2019 IEEE. Training models to high-end performance requires availability of large labeled datasets, which are expensive to get. The goal of our work is to automatically synthesize labeled datasets that are relevant for a downstream task. We propose Meta-Sim, which learns a generative model of synthetic scenes, and obtain images as well as its corresponding ground-truth via a graphics engine. We parametrize our dataset generator with a neural network, which learns to modify attributes of scene graphs obtained from probabilistic scene grammars, so as to minimize the distribution gap between its rendered outputs and target data. If the real dataset comes with a small labeled validation set, we additionally aim to optimize a meta-objective, i.e. downstream task performance. Experiments show that the proposed method can greatly improve content generation quality over a human-engineered probabilistic scene grammar, both qualitatively and quantitatively as measured by performance on a downstream task.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/iccv.2019.00465en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMeta-Sim: Learning to Generate Synthetic Datasetsen_US
dc.typeArticleen_US
dc.identifier.citation2020. "Meta-Sim: Learning to Generate Synthetic Datasets." Proceedings of the IEEE International Conference on Computer Vision, 2019-October.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journal2019 IEEE/CVF International Conference on Computer Vision (ICCV)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-04-15T17:07:08Z
dspace.orderedauthorsKar, A; Prakash, A; Liu, M-Y; Cameracci, E; Yuan, J; Rusiniak, M; Acuna, D; Torralba, A; Fidler, Sen_US
dspace.date.submission2021-04-15T17:07:10Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version