Show simple item record

dc.contributor.authorDai, Wangzhi
dc.contributor.authorNg, Kenney
dc.contributor.authorSeverson, Kristen A
dc.contributor.authorHuang, Wei
dc.contributor.authorAnderson, Fred
dc.contributor.authorStultz, Collin M
dc.date.accessioned2022-01-04T15:05:25Z
dc.date.available2021-11-04T17:00:18Z
dc.date.available2022-01-04T15:05:25Z
dc.date.issued2019-11
dc.identifier.urihttps://hdl.handle.net/1721.1/137374.2
dc.description.abstract© 2019 IEEE. Although oversampling methods are widely used to deal with class imbalance problems, most only utilize observed samples in the minority class and ignore the rich information available in the majority class. In this work, we use an oversampling method that leverages information in both the majority and minority classes to mitigate the class imbalance problem. Experimental results on two clinical datasets with highly imbalanced outcomes demonstrate that prediction models can be significantly improved using data obtained from this oversampling method when the number of minority class samples is very small.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/ICDM.2019.00020en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleGenerative Oversampling with a Contrastive Variational Autoencoderen_US
dc.typeArticleen_US
dc.identifier.citationDai, Wangzhi, Ng, Kenney, Severson, Kristen, Huang, Wei, Anderson, Fred et al. 2019. "Generative Oversampling with a Contrastive Variational Autoencoder." Proceedings - IEEE International Conference on Data Mining, ICDM, 2019-November.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMIT-IBM Watson AI Laben_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.relation.journalProceedings - IEEE International Conference on Data Mining, ICDMen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-02-03T17:26:28Z
dspace.orderedauthorsDai, W; Ng, K; Severson, K; Huang, W; Anderson, F; Stultz, Cen_US
dspace.date.submission2021-02-03T17:26:48Z
mit.journal.volume2019-Novemberen_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version