Show simple item record

dc.contributor.authorGuo, Jiang
dc.contributor.authorShah, Darsh
dc.contributor.authorBarzilay, Regina
dc.date.accessioned2021-11-05T11:25:18Z
dc.date.available2021-11-05T11:25:18Z
dc.date.issued2018-10
dc.identifier.urihttps://hdl.handle.net/1721.1/137419
dc.description.abstract© 2018 Association for Computational Linguistics We propose a mixture-of-experts approach for unsupervised domain adaptation from multiple sources. The key idea is to explicitly capture the relationship between a target example and different source domains. This relationship, expressed by a point-to-set metric, determines how to combine predictors trained on various domains. The metric is learned in an unsupervised fashion using meta-training. Experimental results on sentiment analysis and part-of-speech tagging demonstrate that our approach consistently outperforms multiple baselines and can robustly handle negative transfer.1en_US
dc.language.isoen
dc.publisherAssociation for Computational Linguistics (ACL)en_US
dc.relation.isversionof10.18653/V1/D18-1498en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAssociation for Computational Linguisticsen_US
dc.titleMulti-Source Domain Adaptation with Mixture of Expertsen_US
dc.typeArticleen_US
dc.identifier.citationGuo, Jiang, Shah, Darsh and Barzilay, Regina. 2018. "Multi-Source Domain Adaptation with Mixture of Experts." Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018.
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-01T13:11:10Z
dspace.orderedauthorsGuo, J; Shah, D; Barzilay, Ren_US
dspace.date.submission2020-12-01T13:11:13Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record