MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalizing Over Uncertain Dynamics for Online Trajectory Generation

Author(s)
Kim, Beomjoon; Kim, Albert; Dai, Hongkai; Kaelbling, Leslie; Lozano-Perez, Tomas
Thumbnail
DownloadAccepted version (799.6Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We present an algorithm which learns an online trajectory generator that can generalize over varying and uncertain dynamics. When the dynamics is certain,the algorithm generalizes across model parameters. When the dynamics is partially observable, the algorithm generalizes across different observations. To do this, we employ recent advances in supervised imitation learning to learn a trajectory generator from a set of example trajectories computed by a trajectory optimizer. In experiments in two simulated domains, it finds solutions that are nearly as good as, and sometimes better than, those obtained by calling the trajectory optimizer online. The online execution time is dramatically decreased, and the off-line training time is reasonable.
Date issued
2017-07
URI
https://hdl.handle.net/1721.1/137619
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
Springer Nature
Citation
Kim, Beomjoon, Kim, Albert, Dai, Hongkai, Kaelbling, Leslie and Lozano-Perez, Tomas. 2017. "Generalizing Over Uncertain Dynamics for Online Trajectory Generation."
Version: Author's final manuscript
ISSN
2511-1256
2511-1264

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.