Show simple item record

dc.contributor.authorKim, Beomjoon
dc.contributor.authorKim, Albert
dc.contributor.authorDai, Hongkai
dc.contributor.authorKaelbling, Leslie
dc.contributor.authorLozano-Perez, Tomas
dc.date.accessioned2021-11-05T20:35:48Z
dc.date.available2021-11-05T20:35:48Z
dc.date.issued2017-07
dc.identifier.issn2511-1256
dc.identifier.issn2511-1264
dc.identifier.urihttps://hdl.handle.net/1721.1/137619
dc.description.abstractWe present an algorithm which learns an online trajectory generator that can generalize over varying and uncertain dynamics. When the dynamics is certain,the algorithm generalizes across model parameters. When the dynamics is partially observable, the algorithm generalizes across different observations. To do this, we employ recent advances in supervised imitation learning to learn a trajectory generator from a set of example trajectories computed by a trajectory optimizer. In experiments in two simulated domains, it finds solutions that are nearly as good as, and sometimes better than, those obtained by calling the trajectory optimizer online. The online execution time is dramatically decreased, and the off-line training time is reasonable.en_US
dc.language.isoen
dc.publisherSpringer Natureen_US
dc.relation.isversionof10.1007/978-3-319-60916-4_3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleGeneralizing Over Uncertain Dynamics for Online Trajectory Generationen_US
dc.typeArticleen_US
dc.identifier.citationKim, Beomjoon, Kim, Albert, Dai, Hongkai, Kaelbling, Leslie and Lozano-Perez, Tomas. 2017. "Generalizing Over Uncertain Dynamics for Online Trajectory Generation."
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-06-04T15:21:12Z
dspace.date.submission2019-06-04T15:21:13Z
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record