MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extracting Gait Velocity and Stride Length from Surrounding Radio Signals

Author(s)
Hsu, Chen-Yu; Liu, Yuchen; Kabelac, Zachary; Hristov, Rumen; Katabi, Dina; Liu, Christine; ... Show more Show less
Thumbnail
DownloadAccepted version (966.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2017 ACM. Gait velocity and stride length are critical health indicators for older adults. A decade of medical research shows that they provide a predictor of future falls, hospitalization, and functional decline among seniors. However, currently these metrics are measured only occasionally during medical visits. Such infrequent measurements hamper the opportunity to detect changes and intervene early in the impairment process. In this paper, we develop a sensor that uses radio signals to continuously measure gait velocity and stride length at home. Our sensor hangs on a wall like a picture frame. It does not require the monitored person to wear or carry a device on her body. Our approach builds on recent advances in wireless systems which have shown that one can locate people based on how their bodies impact the surrounding radio signals. We demonstrate the accuracy of our method by comparing it to the gold standard in clinical tests, and the VICON motion tracking system. Our experience from deploying the sensor in 14 homes indicates comfort with the technology and a high acceptance rate.
Date issued
2017-05-02
URI
https://hdl.handle.net/1721.1/137729
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
ACM
Citation
Hsu, Chen-Yu, Liu, Yuchen, Kabelac, Zachary, Hristov, Rumen, Katabi, Dina et al. 2017. "Extracting Gait Velocity and Stride Length from Surrounding Radio Signals."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.