MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Space Objects Maneuvering Prediction via Maximum Causal Entropy Inverse Reinforcement Learning

Author(s)
Doerr, Bryce G; Linares, Richard; Furfaro, Roberto
Thumbnail
DownloadAccepted version (1.223Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Inverse Reinforcement Learning (RL) can be used to determine the behavior of Space Objects (SOs) by estimating the reward function that an SO is using for control. The approach discussed in this work can be used to analyze maneuvering of SOs from observational data. The inverse RL problem is solved using maximum causal entropy. This approach determines the optimal reward function that a SO is using while maneuvering with random disturbances by assuming that the observed trajectories are optimal with respect to the SO’s own reward function. Lastly, this paper develops results for scenarios involving Low Earth Orbit (LEO) station-keeping and Geostationary Orbit (GEO) station-keeping.
Date issued
2020
URI
https://hdl.handle.net/1721.1/137730
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
AIAA Scitech 2020 Forum
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Citation
Doerr, Bryce G, Linares, Richard and Furfaro, Roberto. 2020. "Space Objects Maneuvering Prediction via Maximum Causal Entropy Inverse Reinforcement Learning." AIAA Scitech 2020 Forum, 1 PartF.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.