Show simple item record

dc.contributor.authorDoerr, Bryce G
dc.contributor.authorLinares, Richard
dc.contributor.authorFurfaro, Roberto
dc.date.accessioned2021-11-08T17:46:11Z
dc.date.available2021-11-08T17:46:11Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/137730
dc.description.abstractInverse Reinforcement Learning (RL) can be used to determine the behavior of Space Objects (SOs) by estimating the reward function that an SO is using for control. The approach discussed in this work can be used to analyze maneuvering of SOs from observational data. The inverse RL problem is solved using maximum causal entropy. This approach determines the optimal reward function that a SO is using while maneuvering with random disturbances by assuming that the observed trajectories are optimal with respect to the SO’s own reward function. Lastly, this paper develops results for scenarios involving Low Earth Orbit (LEO) station-keeping and Geostationary Orbit (GEO) station-keeping.en_US
dc.language.isoen
dc.publisherAmerican Institute of Aeronautics and Astronautics (AIAA)en_US
dc.relation.isversionof10.2514/6.2020-0235en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleSpace Objects Maneuvering Prediction via Maximum Causal Entropy Inverse Reinforcement Learningen_US
dc.typeArticleen_US
dc.identifier.citationDoerr, Bryce G, Linares, Richard and Furfaro, Roberto. 2020. "Space Objects Maneuvering Prediction via Maximum Causal Entropy Inverse Reinforcement Learning." AIAA Scitech 2020 Forum, 1 PartF.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.relation.journalAIAA Scitech 2020 Forumen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-05-06T15:36:21Z
dspace.orderedauthorsDoerr, BG; Linares, R; Furfaro, Ren_US
dspace.date.submission2021-05-06T15:36:22Z
mit.journal.volume1 PartFen_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record