Show simple item record

dc.contributor.authorTony Cai, T
dc.contributor.authorLiang, T
dc.contributor.authorRakhlin, A
dc.date.accessioned2021-12-03T16:12:27Z
dc.date.available2021-12-03T16:12:27Z
dc.date.issued2020-01-01
dc.identifier.urihttps://hdl.handle.net/1721.1/138310
dc.description.abstract© 2020 T. Tony Cai, Tengyuan Liang and Alexander Rakhlin. License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at http://jmlr.org/papers/v21/18-573.html. We study the misclassification error for community detection in general heterogeneous stochastic block models (SBM) with noisy or partial label information. We establish a connection between the misclassification rate and the notion of minimum energy on the local neighborhood of the SBM. We develop an optimally weighted message passing algorithm to reconstruct labels for SBM based on the minimum energy flow and the eigenvectors of a certain Markov transition matrix. The general SBM considered in this paper allows for unequal-size communities, degree heterogeneity, and different connection probabilities among blocks. We focus on how to optimally weigh the message passing to improve misclassification.en_US
dc.language.isoen
dc.relation.isversionofhttps://jmlr.org/papers/v21/18-573.htmlen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceJournal of Machine Learning Researchen_US
dc.titleWeighted message passing and minimum energy flow for heterogeneous stochastic block models with side informationen_US
dc.typeArticleen_US
dc.identifier.citationTony Cai, T, Liang, T and Rakhlin, A. 2020. "Weighted message passing and minimum energy flow for heterogeneous stochastic block models with side information." Journal of Machine Learning Research, 21.
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.relation.journalJournal of Machine Learning Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-12-03T16:06:31Z
dspace.orderedauthorsTony Cai, T; Liang, T; Rakhlin, Aen_US
dspace.date.submission2021-12-03T16:06:32Z
mit.journal.volume21en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record