Multivalent polymers can control phase boundary, dynamics, and organization of liquid-liquid phase separation
Author(s)
Zumbro, Emiko; Alexander-Katz, Alfredo
Downloadjournal.pone.0245405.pdf (5.302Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Multivalent polymers are a key structural component of many biocondensates. When interacting with their cognate binding proteins, multivalent polymers such as RNA and modular proteins have been shown to influence the liquid-liquid phase separation (LLPS) boundary to control condensate formation and to influence condensate dynamics after phase separation. Much is still unknown about the function and formation of these condensed droplets, but changes in their dynamics or phase separation are associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s Disease. Therefore, investigation into how the structure of multivalent polymers relates to changes in biocondensate formation and maturation is essential to understanding and treating these diseases. Here, we use a coarse-grain, Brownian Dynamics simulation with reactive binding that mimics specific interactions in order to investigate the difference between non-specific and specific multivalent binding polymers. We show that non-specific binding interactions can lead to much larger changes in droplet formation at lower energies than their specific, valence-limited counterparts. We also demonstrate the effects of solvent conditions and polymer length on phase separation, and we present how modulating binding energy to the polymer can change the organization of a droplet in a three component system of polymer, binding protein, and solvent. Finally, we compare the effects of surface tension and polymer binding on the condensed phase dynamics, where we show that both lower protein solubilities and higher attraction/affinity of the protein to the polymer result in slower droplet dynamics. We hope this research helps to better understand experimental systems and provides additional insight into how multivalent polymers can control LLPS.
Date issued
2020-12-31Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringPublisher
Cold Spring Harbor Laboratory
Citation
Zumbro, Emiko and Alexander-Katz, Alfredo. 2020. "Multivalent polymers can control phase boundary, dynamics, and organization of liquid-liquid phase separation."
Version: Final published version