Confinement-induced stabilization of the Rayleigh-Taylor instability and transition to the unconfined limit
Author(s)
Alqatari, Samar; Videbæk, Thomas E; Nagel, Sidney R; Hosoi, Anette E.; Bischofberger, Irmgard
DownloadPublished version (1.675Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Copyright c 2020 The Authors, some rights reserved. The prevention of hydrodynamic instabilities can lead to important insights for understanding the instabilities' underlying dynamics. The Rayleigh-Taylor instability that arises when a dense fluid sinks into and displaces a lighter one is particularly difficult to arrest. By preparing a density inversion between two miscible fluids inside the thin gap separating two flat plates, we create a clean initial stationary interface. Under these conditions, we find that the instability is suppressed below a critical plate spacing. With increasing spacing, the system transitions from the limit of stability where mass diffusion dominates over buoyant forces, through a regime where the gap sets the wavelength of the instability, to the unconfined regime governed by the competition between buoyancy and momentum diffusion. Our study, including experiment, simulation, and linear stability analysis, characterizes all three regimes of confinement and opens new routes for controlling mixing processes.
Date issued
2020Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Alqatari, Samar, Videbæk, Thomas E, Nagel, Sidney R, Hosoi, AE and Bischofberger, Irmgard. 2020. "Confinement-induced stabilization of the Rayleigh-Taylor instability and transition to the unconfined limit." Science Advances, 6 (47).
Version: Final published version