Show simple item record

dc.contributor.authorConway, Claire
dc.contributor.authorNezami, Farhad R.
dc.contributor.authorRogers, Campbell
dc.contributor.authorGroothuis, Adam
dc.contributor.authorSquire, James C.
dc.contributor.authorEdelman, Elazer R.
dc.date.accessioned2021-12-16T14:02:32Z
dc.date.available2021-12-16T14:02:32Z
dc.date.issued2021-10-15
dc.identifier.issn2297-055X
dc.identifier.urihttps://hdl.handle.net/1721.1/138497
dc.description.abstract<jats:p>Recent concern for local drug delivery and withdrawal of the first Food and Drug Administration-approved bioresorbable scaffold emphasizes the need to optimize the relationships between stent design and drug release with imposed arterial injury and observed pharmacodynamics. In this study, we examine the hypothesis that vascular injury is predictable from stent design and that the expanding force of stent deployment results in increased circumferential stress in the arterial tissue, which may explain acute injury poststent deployment. Using both numerical simulations and <jats:italic>ex vivo</jats:italic> experiments on three different stent designs (slotted tube, corrugated ring, and delta wing), arterial injury due to device deployment was examined. Furthermore, using numerical simulations, the consequence of changing stent strut radial thickness on arterial wall shear stress and arterial circumferential stress distributions was examined. Regions with predicted arterial circumferential stress exceeding a threshold of 49.5 kPa compared favorably with observed <jats:italic>ex vivo</jats:italic> endothelial denudation for the three considered stent designs. In addition, increasing strut thickness was predicted to result in more areas of denudation and larger areas exposed to low wall shear stress. We conclude that the acute arterial injury, observed immediately following stent expansion, is caused by high circumferential hoop stresses in the interstrut region, and denuded area profiles are dependent on unit cell geometric features. Such findings when coupled with where drugs move might explain the drug–device interactions.</jats:p>en_US
dc.publisherFrontiers Media SAen_US
dc.relation.isversionof10.3389/fcvm.2021.733605en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiersen_US
dc.titleAcute Stent-Induced Endothelial Denudation: Biomechanical Predictors of Vascular Injuryen_US
dc.typeArticleen_US
dc.identifier.citationConway, Claire, Nezami, Farhad R., Rogers, Campbell, Groothuis, Adam, Squire, James C. et al. 2021. "Acute Stent-Induced Endothelial Denudation: Biomechanical Predictors of Vascular Injury." 8.
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Science
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2021-12-16T13:56:36Z
mit.journal.volume8en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record