Effects of recoil spectra and electronic energy dissipation on defect survival in 3C-SiC
Author(s)
Nuckols, Lauren; Crespillo, Miguel L; Yang, Yang; Li, Ju; Zarkadoula, Eva; Zhang, Yanwen; Weber, William J; ... Show more Show less
DownloadAccepted version (1.542Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
© 2021 Acta Materialia Inc. The coincidence of electronic and damage energy dissipation from energetic ions to an atomic lattice can significantly affect damage production along the ion trajectory due to spatial overlap of inelastic and elastic processes. Damage production and disordering in single crystal 3C-SiC from 5 MeV Si and 10 MeV Au ions is investigated using ion-channeling experiments. While defects are created by damage energy dissipation via elastic scattering, electronic energy dissipation via electron-phonon coupling decreases defect survival along the ion trajectory for Si ions. The more energetic recoil spectrum for 10 MeV Au ions leads to weaker spatial coupling of electronic and damage energy dissipation processes, and damage production is only weakly affected.
Date issued
2021-03Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Materialia
Publisher
Elsevier BV
Citation
Nuckols, Lauren, Crespillo, Miguel L, Yang, Yang, Li, Ju, Zarkadoula, Eva et al. 2021. "Effects of recoil spectra and electronic energy dissipation on defect survival in 3C-SiC." Materialia, 15.
Version: Author's final manuscript
ISSN
2589-1529