A big data approach to understanding pedestrian route choice preferences: Evidence from San Francisco
Author(s)
Sevtsuk, Andres; Basu, Rounaq; Li, Xiaojiang; Kalvo, Raul
DownloadAccepted version (3.363Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Big data from smartphone applications are enabling travel behavior studies at an unprecedented scale. In this paper, we examine pedestrian route choice preferences in San Francisco, California using a large, anonymized dataset of walking trajectories collected from an activity-based smartphone application. We study the impact of various street attributes known to affect pedestrian route choice from prior literature. Unlike most studies, where data has been constrained to a particular destination type (e.g. walking to transit stations) or limited in volume, a large number of actual trajectories presented here include a wide diversity of destinations and geographies, allowing us to describing typical pedestrians’ preferences in San Francisco as a whole. Other innovations presented in the paper include using a novel technique for generating alternative paths for route choice estimation and gathering previously hard-to-get route attribute information by computationally processing a large set of Google Street View images. We also demonstrate how the estimated coefficients can be operationalized for policy and planning to describe pedestrian accessibility to BART stations in San Francisco using ‘perceived distance’ as opposed to traversed distance.
Date issued
2021-10Department
Massachusetts Institute of Technology. Department of Urban Studies and PlanningJournal
Travel Behaviour and Society
Publisher
Elsevier BV
Citation
Sevtsuk, Andres, Basu, Rounaq, Li, Xiaojiang and Kalvo, Raul. 2021. "A big data approach to understanding pedestrian route choice preferences: Evidence from San Francisco." Travel Behaviour and Society, 25.
Version: Author's final manuscript
ISSN
2214-367X