Magnetic‐Field‐Switchable Laser via Optical Pumping of Rubrene
Author(s)
Perkinson, Collin F.; Einzinger, Markus; Finley, Joseph; Bawendi, Moungi G.; Baldo, Marc A.
DownloadPublished version (2.679Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Volumetric optical imaging of magnetic fields is challenging with existing magneto-optical materials, motivating the search for dyes with strong magnetic field interactions, distinct emission spectra, and an ability to withstand high photon flux and incorporation within samples. Here, the magnetic field effect on singlet-exciton fission is exploited to demonstrate spatial imaging of magnetic fields in a thin film of rubrene. Doping rubrene with the high-quantum yield dye dibenzotetraphenylperiflanthene (DBP) is shown to enable optically pumped, slab waveguide lasing. This laser is magnetic-field-switchable: when operated just below the lasing threshold, application of a 0.4 T magnetic field switches the device between nonlasing and lasing modes, accompanied by an intensity modulation of +360%. This is thought to be the first demonstration of a magnetically switchable laser, as well as the largest magnetically induced change in emission brightness in a singlet-fission material to date. These results demonstrate that singlet-fission materials are promising materials for magnetic sensing applications and could inspire a new class of magneto-optical modulators.
Date issued
2021-12Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Advanced Materials
Publisher
Wiley
Citation
Perkinson, Collin F, Einzinger, Markus, Finley, Joseph, Bawendi, Moungi G and Baldo, Marc A. 2022. "Magnetic‐Field‐Switchable Laser via Optical Pumping of Rubrene." Advanced Materials, 34 (4).
Version: Final published version
ISSN
0935-9648
1521-4095