MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse Approximation of Triangular Transports, Part I: The Finite-Dimensional Case

Author(s)
Zech, Jakob; Marzouk, Youssef
Thumbnail
Download365_2022_Article_9569.pdf (988.2Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract For two probability measures $${\rho }$$ ρ and $${\pi }$$ π with analytic densities on the d-dimensional cube $$[-1,1]^d$$ [ - 1 , 1 ] d , we investigate the approximation of the unique triangular monotone Knothe–Rosenblatt transport $$T:[-1,1]^d\rightarrow [-1,1]^d$$ T : [ - 1 , 1 ] d → [ - 1 , 1 ] d , such that the pushforward $$T_\sharp {\rho }$$ T ♯ ρ equals $${\pi }$$ π . It is shown that for $$d\in {{\mathbb {N}}}$$ d ∈ N there exist approximations $${\tilde{T}}$$ T ~ of T, based on either sparse polynomial expansions or deep ReLU neural networks, such that the distance between $${\tilde{T}}_\sharp {\rho }$$ T ~ ♯ ρ and $${\pi }$$ π decreases exponentially. More precisely, we prove error bounds of the type $$\exp (-\beta N^{1/d})$$ exp ( - β N 1 / d ) (or $$\exp (-\beta N^{1/(d+1)})$$ exp ( - β N 1 / ( d + 1 ) ) for neural networks), where N refers to the dimension of the ansatz space (or the size of the network) containing $${\tilde{T}}$$ T ~ ; the notion of distance comprises the Hellinger distance, the total variation distance, the Wasserstein distance and the Kullback–Leibler divergence. Our construction guarantees $${\tilde{T}}$$ T ~ to be a monotone triangular bijective transport on the hypercube $$[-1,1]^d$$ [ - 1 , 1 ] d . Analogous results hold for the inverse transport $$S=T^{-1}$$ S = T - 1 . The proofs are constructive, and we give an explicit a priori description of the ansatz space, which can be used for numerical implementations.
Date issued
2022-03-19
URI
https://hdl.handle.net/1721.1/141313
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Springer US
Citation
Zech, Jakob and Marzouk, Youssef. 2022. "Sparse Approximation of Triangular Transports, Part I: The Finite-Dimensional Case."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.