Show simple item record

dc.contributor.authorZech, Jakob
dc.contributor.authorMarzouk, Youssef
dc.date.accessioned2022-03-21T12:42:05Z
dc.date.available2022-03-21T12:42:05Z
dc.date.issued2022-03-19
dc.identifier.urihttps://hdl.handle.net/1721.1/141313
dc.description.abstractAbstract For two probability measures $${\rho }$$ ρ and $${\pi }$$ π with analytic densities on the d-dimensional cube $$[-1,1]^d$$ [ - 1 , 1 ] d , we investigate the approximation of the unique triangular monotone Knothe–Rosenblatt transport $$T:[-1,1]^d\rightarrow [-1,1]^d$$ T : [ - 1 , 1 ] d → [ - 1 , 1 ] d , such that the pushforward $$T_\sharp {\rho }$$ T ♯ ρ equals $${\pi }$$ π . It is shown that for $$d\in {{\mathbb {N}}}$$ d ∈ N there exist approximations $${\tilde{T}}$$ T ~ of T, based on either sparse polynomial expansions or deep ReLU neural networks, such that the distance between $${\tilde{T}}_\sharp {\rho }$$ T ~ ♯ ρ and $${\pi }$$ π decreases exponentially. More precisely, we prove error bounds of the type $$\exp (-\beta N^{1/d})$$ exp ( - β N 1 / d ) (or $$\exp (-\beta N^{1/(d+1)})$$ exp ( - β N 1 / ( d + 1 ) ) for neural networks), where N refers to the dimension of the ansatz space (or the size of the network) containing $${\tilde{T}}$$ T ~ ; the notion of distance comprises the Hellinger distance, the total variation distance, the Wasserstein distance and the Kullback–Leibler divergence. Our construction guarantees $${\tilde{T}}$$ T ~ to be a monotone triangular bijective transport on the hypercube $$[-1,1]^d$$ [ - 1 , 1 ] d . Analogous results hold for the inverse transport $$S=T^{-1}$$ S = T - 1 . The proofs are constructive, and we give an explicit a priori description of the ansatz space, which can be used for numerical implementations.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00365-022-09569-2en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleSparse Approximation of Triangular Transports, Part I: The Finite-Dimensional Caseen_US
dc.typeArticleen_US
dc.identifier.citationZech, Jakob and Marzouk, Youssef. 2022. "Sparse Approximation of Triangular Transports, Part I: The Finite-Dimensional Case."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-20T04:15:01Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-03-20T04:15:01Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record