| dc.contributor.author | Zech, Jakob | |
| dc.contributor.author | Marzouk, Youssef | |
| dc.date.accessioned | 2022-03-21T12:42:05Z | |
| dc.date.available | 2022-03-21T12:42:05Z | |
| dc.date.issued | 2022-03-19 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/141313 | |
| dc.description.abstract | Abstract
For two probability measures
$${\rho }$$
ρ
and
$${\pi }$$
π
with analytic densities on the d-dimensional cube
$$[-1,1]^d$$
[
-
1
,
1
]
d
, we investigate the approximation of the unique triangular monotone Knothe–Rosenblatt transport
$$T:[-1,1]^d\rightarrow [-1,1]^d$$
T
:
[
-
1
,
1
]
d
→
[
-
1
,
1
]
d
, such that the pushforward
$$T_\sharp {\rho }$$
T
♯
ρ
equals
$${\pi }$$
π
. It is shown that for
$$d\in {{\mathbb {N}}}$$
d
∈
N
there exist approximations
$${\tilde{T}}$$
T
~
of T, based on either sparse polynomial expansions or deep ReLU neural networks, such that the distance between
$${\tilde{T}}_\sharp {\rho }$$
T
~
♯
ρ
and
$${\pi }$$
π
decreases exponentially. More precisely, we prove error bounds of the type
$$\exp (-\beta N^{1/d})$$
exp
(
-
β
N
1
/
d
)
(or
$$\exp (-\beta N^{1/(d+1)})$$
exp
(
-
β
N
1
/
(
d
+
1
)
)
for neural networks), where N refers to the dimension of the ansatz space (or the size of the network) containing
$${\tilde{T}}$$
T
~
; the notion of distance comprises the Hellinger distance, the total variation distance, the Wasserstein distance and the Kullback–Leibler divergence. Our construction guarantees
$${\tilde{T}}$$
T
~
to be a monotone triangular bijective transport on the hypercube
$$[-1,1]^d$$
[
-
1
,
1
]
d
. Analogous results hold for the inverse transport
$$S=T^{-1}$$
S
=
T
-
1
. The proofs are constructive, and we give an explicit a priori description of the ansatz space, which can be used for numerical implementations. | en_US |
| dc.publisher | Springer US | en_US |
| dc.relation.isversionof | https://doi.org/10.1007/s00365-022-09569-2 | en_US |
| dc.rights | Creative Commons Attribution | en_US |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
| dc.source | Springer US | en_US |
| dc.title | Sparse Approximation of Triangular Transports, Part I: The Finite-Dimensional Case | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Zech, Jakob and Marzouk, Youssef. 2022. "Sparse Approximation of Triangular Transports, Part I: The Finite-Dimensional Case." | |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | |
| dc.identifier.mitlicense | PUBLISHER_CC | |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2022-03-20T04:15:01Z | |
| dc.language.rfc3066 | en | |
| dc.rights.holder | The Author(s) | |
| dspace.embargo.terms | N | |
| dspace.date.submission | 2022-03-20T04:15:01Z | |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |