High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics
Author(s)
Zhang, Bo; Wang, Lie; Cao, Zhen; Kozlov, Sergey M.; García de Arquer, F. Pelayo; Dinh, Cao Thang; Li, Jun; Wang, Ziyun; Zheng, Xueli; Zhang, Longsheng; Wen, Yunzhou; Voznyy, Oleksandr; Comin, Riccardo; De Luna, Phil; Regier, Tom; Bi, Wenli; Alp, E. Ercan; Pao, Chih-Wen; Zheng, Lirong; Hu, Yongfeng; Ji, Yujin; Li, Youyong; Zhang, Ye; Cavallo, Luigi; Peng, Huisheng; Sargent, Edward H.; ... Show more Show less
DownloadAccepted version (398.4Kb)
Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Multimetal oxyhydroxides have recently been reported that outperform noble metal catalysts for oxygen evolution reaction (OER). In such 3d-metal-based catalysts, the oxidation cycle of 3d metals has been posited to act as the OER thermodynamic-limiting process; however, further tuning of its energetics is challenging due to similarities among the electronic structures of neighbouring 3d metal modulators. Here we report a strategy to reprogram the Fe, Co and Ni oxidation cycles by incorporating high-valence transition-metal modulators X (X = W, Mo, Nb, Ta, Re and MoW). We use in situ and ex situ soft and hard X-ray absorption spectroscopies to characterize the oxidation transition in modulated NiFeX and FeCoX oxyhydroxide catalysts, and conclude that the lower OER overpotential is facilitated by the readier oxidation transition of 3d metals enabled by high-valence modulators. We report an ~17-fold mass activity enhancement compared with that for the OER catalysts widely employed in industrial water-splitting electrolysers. [Figure not available: see fulltext.].
Date issued
2020-10Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Nature Catalysis
Publisher
Springer Science and Business Media LLC
Citation
Zhang, Bo, Wang, Lie, Cao, Zhen, Kozlov, Sergey M, García de Arquer, F Pelayo et al. 2020. "High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics." Nature Catalysis, 3 (12).
Version: Author's final manuscript
ISSN
2520-1158