Show simple item record

dc.contributor.authorSauermann, Lisa
dc.date.accessioned2022-04-04T12:33:36Z
dc.date.available2022-04-04T12:33:36Z
dc.date.issued2022-04-01
dc.identifier.urihttps://hdl.handle.net/1721.1/141628
dc.description.abstractAbstract Let us fix a prime p and a homogeneous system of m linear equations $$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ a j , 1 x 1 + ⋯ + a j , k x k = 0 for $$j=1,\dots ,m$$ j = 1 , ⋯ , m with coefficients $$a_{j,i}\in \mathbb {F}_p$$ a j , i ∈ F p . Suppose that $$k\ge 3m$$ k ≥ 3 m , that $$a_{j,1}+\dots +a_{j,k}=0$$ a j , 1 + ⋯ + a j , k = 0 for $$j=1,\dots ,m$$ j = 1 , ⋯ , m and that every $$m\times m$$ m × m minor of the $$m\times k$$ m × k matrix $$(a_{j,i})_{j,i}$$ ( a j , i ) j , i is non-singular. Then we prove that for any (large) n, any subset $$A\subseteq \mathbb {F}_p^n$$ A ⊆ F p n of size $$|A|> C\cdot \Gamma ^n$$ | A | > C · Γ n contains a solution $$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , ⋯ , x k ) ∈ A k to the given system of equations such that the vectors $$x_1,\dots ,x_k\in A$$ x 1 , ⋯ , x k ∈ A are all distinct. Here, C and $$\Gamma $$ Γ are constants only depending on p, m and k such that $$\Gamma <p$$ Γ < p . The crucial point here is the condition for the vectors $$x_1,\dots ,x_k$$ x 1 , ⋯ , x k in the solution $$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , ⋯ , x k ) ∈ A k to be distinct. If we relax this condition and only demand that $$x_1,\dots ,x_k$$ x 1 , ⋯ , x k are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00208-022-02391-yen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleFinding solutions with distinct variables to systems of linear equations over $$\mathbb {F}_p$$ F pen_US
dc.typeArticleen_US
dc.identifier.citationSauermann, Lisa. 2022. "Finding solutions with distinct variables to systems of linear equations over $$\mathbb {F}_p$$ F p."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-03T03:12:55Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-04-03T03:12:54Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record