MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electromagnetic shower reconstruction and energy validation with Michel electrons and π 0 samples for the deep-learning-based analyses in MicroBooNE

Author(s)
Hen, Or; Conrad, Janet
Thumbnail
DownloadAccepted version (1.808Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>This article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two ν<jats:sub>μ</jats:sub>-sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/142006
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Journal of Instrumentation
Publisher
IOP Publishing
Citation
Hen, Or and Conrad, Janet. 2021. "Electromagnetic shower reconstruction and energy validation with Michel electrons and π 0 samples for the deep-learning-based analyses in MicroBooNE." Journal of Instrumentation, 16 (12).
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.