Show simple item record

dc.contributor.authorHen, Or
dc.contributor.authorConrad, Janet
dc.date.accessioned2022-04-21T15:14:43Z
dc.date.available2022-04-21T15:14:43Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142006
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>This article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two ν<jats:sub>μ</jats:sub>-sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff.</jats:p>en_US
dc.language.isoen
dc.publisherIOP Publishingen_US
dc.relation.isversionof10.1088/1748-0221/16/12/T12017en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleElectromagnetic shower reconstruction and energy validation with Michel electrons and π 0 samples for the deep-learning-based analyses in MicroBooNEen_US
dc.typeArticleen_US
dc.identifier.citationHen, Or and Conrad, Janet. 2021. "Electromagnetic shower reconstruction and energy validation with Michel electrons and π 0 samples for the deep-learning-based analyses in MicroBooNE." Journal of Instrumentation, 16 (12).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalJournal of Instrumentationen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-21T15:01:40Z
dspace.orderedauthorsAbratenko, P; An, R; Anthony, J; Arellano, L; Asaadi, J; Ashkenazi, A; Balasubramanian, S; Baller, B; Barnes, C; Barr, G; Basque, V; Bathe-Peters, L; Benevides Rodrigues, O; Berkman, S; Bhanderi, A; Bhat, A; Bishai, M; Blake, A; Bolton, T; Book, JY; Camilleri, L; Caratelli, D; Caro Terrazas, I; Castillo Fernandez, R; Cavanna, F; Cerati, G; Chen, Y; Cianci, D; Conrad, JM; Convery, M; Cooper-Troendle, L; Crespo-Anadón, JI; Del Tutto, M; Dennis, SR; Detje, P; Devitt, A; Diurba, R; Dorrill, R; Duffy, K; Dytman, S; Eberly, B; Ereditato, A; Evans, JJ; Fine, R; Fiorentini Aguirre, GA; Fitzpatrick, RS; Fleming, BT; Foppiani, N; Franco, D; Furmanski, AP; Garcia-Gamez, D; Gardiner, S; Ge, G; Gollapinni, S; Goodwin, O; Gramellini, E; Green, P; Greenlee, H; Gu, W; Guenette, R; Guzowski, P; Hagaman, L; Hen, O; Hilgenberg, C; Horton-Smith, GA; Hourlier, A; Itay, R; James, C; Ji, X; Jiang, L; Jo, JH; Johnson, RA; Jwa, Y-J; Kalra, D; Kamp, N; Kaneshige, N; Karagiorgi, G; Ketchum, W; Kirby, M; Kobilarcik, T; Kreslo, I; LaZur, R; Lepetic, I; Li, K; Li, Y; Lin, K; Littlejohn, BR; Louis, WC; Luo, X; Manivannan, K; Mariani, C; Marsden, D; Marshall, J; Martinez Caicedo, DA; Mason, K; Mastbaum, A; McConkey, N; Meddage, V; Mettler, T; Miller, K; Mills, J; Mistry, K; Mogan, A; Mohayai, T; Moon, J; Mooney, M; Moor, AF; Moore, CD; Mora Lepin, L; Mousseau, J; Murphy, M; Naples, D; Navrer-Agasson, A; Nebot-Guinot, M; Neely, RK; Newmark, DA; Nowak, J; Nunes, M; Palamara, O; Paolone, V; Papadopoulou, A; Papavassiliou, V; Pate, SF; Patel, N; Paudel, A; Pavlovic, Z; Piasetzky, E; Ponce-Pinto, ID; Prince, S; Qian, X; Raaf, JL; Radeka, V; Rafique, A; Reggiani-Guzzo, M; Ren, L; Rice, LCJ; Rochester, L; Rodriguez Rondon, J; Rosenberg, M; Ross-Lonergan, M; Scanavini, G; Schmitz, DW; Schukraft, A; Seligman, W; Shaevitz, MH; Sharankova, R; Shi, J; Sinclair, J; Smith, A; Snider, EL; Soderberg, M; Söldner-Rembold, S; Spentzouris, P; Spitz, J; Stancari, M; St, J; Strauss, T; Sutton, K; Sword-Fehlberg, S; Szelc, AM; Tagg, N; Tang, W; Terao, K; Thorpe, C; Totani, D; Toups, M; Tsai, Y-T; Uchida, MA; Usher, T; Van De Pontseele, W; Viren, B; Weber, M; Wei, H; Williams, Z; Wolbers, S; Wongjirad, T; Wospakrik, M; Wresilo, K; Wright, N; Wu, W; Yandel, E; Yang, T; Yarbrough, G; Yates, LE; Yu, HW; Zeller, GP; Zennamo, J; Zhang, Cen_US
dspace.date.submission2022-04-21T15:01:42Z
mit.journal.volume16en_US
mit.journal.issue12en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record