MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The CAMELS Multifield Data Set: Learning the Universe’s Fundamental Parameters with Artificial Intelligence

Author(s)
Villaescusa-Navarro, Francisco; Genel, Shy; Anglés-Alcázar, Daniel; Thiele, Leander; Dave, Romeel; Narayanan, Desika; Nicola, Andrina; Li, Yin; Villanueva-Domingo, Pablo; Wandelt, Benjamin; Spergel, David N; Somerville, Rachel S; Zorrilla Matilla, Jose Manuel; Mohammad, Faizan G; Hassan, Sultan; Shao, Helen; Wadekar, Digvijay; Eickenberg, Michael; Wong, Kaze WK; Contardo, Gabriella; Jo, Yongseok; Moser, Emily; Lau, Erwin T; Machado Poletti Valle, Luis Fernando; Perez, Lucia A; Nagai, Daisuke; Battaglia, Nicholas; Vogelsberger, Mark; ... Show more Show less
Thumbnail
DownloadPublished version (730.3Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>We present the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) Multifield Data set (CMD), a collection of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars from more than 2000 distinct simulated universes at several cosmic times. The 2D maps and 3D grids represent cosmic regions that span ∼100 million light-years and have been generated from thousands of state-of-the-art hydrodynamic and gravity-only <jats:italic>N</jats:italic>-body simulations from the CAMELS project. Designed to train machine-learning models, CMD is the largest data set of its kind containing more than 70 TB of data. In this paper we describe CMD in detail and outline a few of its applications. We focus our attention on one such task, parameter inference, formulating the problems we face as a challenge to the community. We release all data and provide further technical details at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://camels-multifield-dataset.readthedocs.io" xlink:type="simple">https://camels-multifield-dataset.readthedocs.io</jats:ext-link>.</jats:p>
Date issued
2022-04-01
URI
https://hdl.handle.net/1721.1/142371
Department
MIT Kavli Institute for Astrophysics and Space Research; Massachusetts Institute of Technology. Department of Physics
Journal
The Astrophysical Journal Supplement Series
Publisher
American Astronomical Society
Citation
Villaescusa-Navarro, Francisco, Genel, Shy, Anglés-Alcázar, Daniel, Thiele, Leander, Dave, Romeel et al. 2022. "The CAMELS Multifield Data Set: Learning the Universe’s Fundamental Parameters with Artificial Intelligence." The Astrophysical Journal Supplement Series, 259 (2).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.