Show simple item record

dc.contributor.authorVillaescusa-Navarro, Francisco
dc.contributor.authorGenel, Shy
dc.contributor.authorAnglés-Alcázar, Daniel
dc.contributor.authorThiele, Leander
dc.contributor.authorDave, Romeel
dc.contributor.authorNarayanan, Desika
dc.contributor.authorNicola, Andrina
dc.contributor.authorLi, Yin
dc.contributor.authorVillanueva-Domingo, Pablo
dc.contributor.authorWandelt, Benjamin
dc.contributor.authorSpergel, David N
dc.contributor.authorSomerville, Rachel S
dc.contributor.authorZorrilla Matilla, Jose Manuel
dc.contributor.authorMohammad, Faizan G
dc.contributor.authorHassan, Sultan
dc.contributor.authorShao, Helen
dc.contributor.authorWadekar, Digvijay
dc.contributor.authorEickenberg, Michael
dc.contributor.authorWong, Kaze WK
dc.contributor.authorContardo, Gabriella
dc.contributor.authorJo, Yongseok
dc.contributor.authorMoser, Emily
dc.contributor.authorLau, Erwin T
dc.contributor.authorMachado Poletti Valle, Luis Fernando
dc.contributor.authorPerez, Lucia A
dc.contributor.authorNagai, Daisuke
dc.contributor.authorBattaglia, Nicholas
dc.contributor.authorVogelsberger, Mark
dc.date.accessioned2022-05-05T18:41:26Z
dc.date.available2022-05-05T18:41:26Z
dc.date.issued2022-04-01
dc.identifier.urihttps://hdl.handle.net/1721.1/142371
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>We present the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) Multifield Data set (CMD), a collection of hundreds of thousands of 2D maps and 3D grids containing many different properties of cosmic gas, dark matter, and stars from more than 2000 distinct simulated universes at several cosmic times. The 2D maps and 3D grids represent cosmic regions that span ∼100 million light-years and have been generated from thousands of state-of-the-art hydrodynamic and gravity-only <jats:italic>N</jats:italic>-body simulations from the CAMELS project. Designed to train machine-learning models, CMD is the largest data set of its kind containing more than 70 TB of data. In this paper we describe CMD in detail and outline a few of its applications. We focus our attention on one such task, parameter inference, formulating the problems we face as a challenge to the community. We release all data and provide further technical details at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://camels-multifield-dataset.readthedocs.io" xlink:type="simple">https://camels-multifield-dataset.readthedocs.io</jats:ext-link>.</jats:p>en_US
dc.language.isoen
dc.publisherAmerican Astronomical Societyen_US
dc.relation.isversionof10.3847/1538-4365/ac5ab0en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourceAmerican Astronomical Societyen_US
dc.titleThe CAMELS Multifield Data Set: Learning the Universe’s Fundamental Parameters with Artificial Intelligenceen_US
dc.typeArticleen_US
dc.identifier.citationVillaescusa-Navarro, Francisco, Genel, Shy, Anglés-Alcázar, Daniel, Thiele, Leander, Dave, Romeel et al. 2022. "The CAMELS Multifield Data Set: Learning the Universe’s Fundamental Parameters with Artificial Intelligence." The Astrophysical Journal Supplement Series, 259 (2).
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Research
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalThe Astrophysical Journal Supplement Seriesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-05T18:31:37Z
dspace.orderedauthorsVillaescusa-Navarro, F; Genel, S; Anglés-Alcázar, D; Thiele, L; Dave, R; Narayanan, D; Nicola, A; Li, Y; Villanueva-Domingo, P; Wandelt, B; Spergel, DN; Somerville, RS; Zorrilla Matilla, JM; Mohammad, FG; Hassan, S; Shao, H; Wadekar, D; Eickenberg, M; Wong, KWK; Contardo, G; Jo, Y; Moser, E; Lau, ET; Machado Poletti Valle, LF; Perez, LA; Nagai, D; Battaglia, N; Vogelsberger, Men_US
dspace.date.submission2022-05-05T18:31:40Z
mit.journal.volume259en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record