MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the arithmetic Siegel–Weil formula for GSpin Shimura varieties

Author(s)
Li, Chao; Zhang, Wei
Thumbnail
Download222_2022_1106_ReferencePDF.pdf (1016.Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Attribution-NonCommercial-ShareAlike 4.0 International https://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract We formulate and prove a local arithmetic Siegel–Weil formula for GSpin Rapoport–Zink spaces, which is a precise identity between the arithmetic intersection numbers of special cycles on GSpin Rapoport–Zink spaces and the derivatives of local representation densities of quadratic forms. As a first application, we prove a semi-global arithmetic Siegel–Weil formula as conjectured by Kudla, which relates the arithmetic intersection numbers of special cycles on GSpin Shimura varieties at a place of good reduction and the central derivatives of nonsingular Fourier coefficients of incoherent Siegel Eisenstein series.
Date issued
2022-03-16
URI
https://hdl.handle.net/1721.1/142458
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Li, Chao and Zhang, Wei. 2022. "On the arithmetic Siegel–Weil formula for GSpin Shimura varieties."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.