Show simple item record

dc.contributor.authorLi, Chao
dc.contributor.authorZhang, Wei
dc.date.accessioned2022-05-11T12:43:02Z
dc.date.available2022-05-11T12:43:02Z
dc.date.issued2022-03-16
dc.identifier.urihttps://hdl.handle.net/1721.1/142458
dc.description.abstractAbstract We formulate and prove a local arithmetic Siegel–Weil formula for GSpin Rapoport–Zink spaces, which is a precise identity between the arithmetic intersection numbers of special cycles on GSpin Rapoport–Zink spaces and the derivatives of local representation densities of quadratic forms. As a first application, we prove a semi-global arithmetic Siegel–Weil formula as conjectured by Kudla, which relates the arithmetic intersection numbers of special cycles on GSpin Shimura varieties at a place of good reduction and the central derivatives of nonsingular Fourier coefficients of incoherent Siegel Eisenstein series.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00222-022-01106-zen_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleOn the arithmetic Siegel–Weil formula for GSpin Shimura varietiesen_US
dc.typeArticleen_US
dc.identifier.citationLi, Chao and Zhang, Wei. 2022. "On the arithmetic Siegel–Weil formula for GSpin Shimura varieties."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-11T03:28:38Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2022-05-11T03:28:38Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record