Show simple item record

dc.contributor.authorMohapatra, Somesh
dc.contributor.authorAn, Joyce
dc.contributor.authorGómez-Bombarelli, Rafael
dc.date.accessioned2022-05-13T15:59:43Z
dc.date.available2022-05-13T15:59:43Z
dc.date.issued2022-03-01
dc.identifier.urihttps://hdl.handle.net/1721.1/142530
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>The near-infinite chemical diversity of natural and artificial macromolecules arises from the vast range of possible component monomers, linkages, and polymers topologies. This enormous variety contributes to the ubiquity and indispensability of macromolecules but hinders the development of general machine learning methods with macromolecules as input. To address this, we developed a chemistry-informed graph representation of macromolecules that enables quantifying structural similarity, and interpretable supervised learning for macromolecules. Our work enables quantitative chemistry-informed decision-making and iterative design in the macromolecular chemical space.</jats:p>en_US
dc.language.isoen
dc.publisherIOP Publishingen_US
dc.relation.isversionof10.1088/2632-2153/ac545een_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourceIOP Publishingen_US
dc.titleChemistry-informed macromolecule graph representation for similarity computation, unsupervised and supervised learningen_US
dc.typeArticleen_US
dc.identifier.citationMohapatra, Somesh, An, Joyce and Gómez-Bombarelli, Rafael. 2022. "Chemistry-informed macromolecule graph representation for similarity computation, unsupervised and supervised learning." Machine Learning: Science and Technology, 3 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalMachine Learning: Science and Technologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-13T15:55:32Z
dspace.orderedauthorsMohapatra, S; An, J; Gómez-Bombarelli, Ren_US
dspace.date.submission2022-05-13T15:55:39Z
mit.journal.volume3en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record