| dc.contributor.author | Mohapatra, Somesh | |
| dc.contributor.author | An, Joyce | |
| dc.contributor.author | Gómez-Bombarelli, Rafael | |
| dc.date.accessioned | 2022-05-13T15:59:43Z | |
| dc.date.available | 2022-05-13T15:59:43Z | |
| dc.date.issued | 2022-03-01 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/142530 | |
| dc.description.abstract | <jats:title>Abstract</jats:title>
<jats:p>The near-infinite chemical diversity of natural and artificial macromolecules arises from the vast range of possible component monomers, linkages, and polymers topologies. This enormous variety contributes to the ubiquity and indispensability of macromolecules but hinders the development of general machine learning methods with macromolecules as input. To address this, we developed a chemistry-informed graph representation of macromolecules that enables quantifying structural similarity, and interpretable supervised learning for macromolecules. Our work enables quantitative chemistry-informed decision-making and iterative design in the macromolecular chemical space.</jats:p> | en_US |
| dc.language.iso | en | |
| dc.publisher | IOP Publishing | en_US |
| dc.relation.isversionof | 10.1088/2632-2153/ac545e | en_US |
| dc.rights | Creative Commons Attribution 4.0 International License | en_US |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | en_US |
| dc.source | IOP Publishing | en_US |
| dc.title | Chemistry-informed macromolecule graph representation for similarity computation, unsupervised and supervised learning | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Mohapatra, Somesh, An, Joyce and Gómez-Bombarelli, Rafael. 2022. "Chemistry-informed macromolecule graph representation for similarity computation, unsupervised and supervised learning." Machine Learning: Science and Technology, 3 (1). | |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | |
| dc.relation.journal | Machine Learning: Science and Technology | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2022-05-13T15:55:32Z | |
| dspace.orderedauthors | Mohapatra, S; An, J; Gómez-Bombarelli, R | en_US |
| dspace.date.submission | 2022-05-13T15:55:39Z | |
| mit.journal.volume | 3 | en_US |
| mit.journal.issue | 1 | en_US |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |