MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te

Author(s)
Aryana, Kiumars; Zhang, Yifei; Tomko, John A; Hoque, Md Shafkat Bin; Hoglund, Eric R; Olson, David H; Nag, Joyeeta; Read, John C; Ríos, Carlos; Hu, Juejun; Hopkins, Patrick E; ... Show more Show less
Thumbnail
DownloadPublished version (2.384Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Integrated nanophotonics is an emerging research direction that has attracted great interests for technologies ranging from classical to quantum computing. One of the key-components in the development of nanophotonic circuits is the phase-change unit that undergoes a solid-state phase transformation upon thermal excitation. The quaternary alloy, Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te, is one of the most promising material candidates for application in photonic circuits due to its broadband transparency and large optical contrast in the infrared spectrum. Here, we investigate the thermal properties of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te and show that upon substituting tellurium with selenium, the thermal transport transitions from an electron dominated to a phonon dominated regime. By implementing an ultrafast mid-infrared pump-probe spectroscopy technique that allows for direct monitoring of electronic and vibrational energy carrier lifetimes in these materials, we find that this reduction in thermal conductivity is a result of a drastic change in electronic lifetimes of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te, leading to a transition from an electron-dominated to a phonon-dominated thermal transport mechanism upon selenium substitution. In addition to thermal conductivity measurements, we provide an extensive study on the thermophysical properties of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te thin films such as thermal boundary conductance, specific heat, and sound speed from room temperature to 400 °C across varying thicknesses.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/142619
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Aryana, Kiumars, Zhang, Yifei, Tomko, John A, Hoque, Md Shafkat Bin, Hoglund, Eric R et al. 2021. "Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te." Nature Communications, 12 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.