Show simple item record

dc.contributor.authorAryana, Kiumars
dc.contributor.authorZhang, Yifei
dc.contributor.authorTomko, John A
dc.contributor.authorHoque, Md Shafkat Bin
dc.contributor.authorHoglund, Eric R
dc.contributor.authorOlson, David H
dc.contributor.authorNag, Joyeeta
dc.contributor.authorRead, John C
dc.contributor.authorRíos, Carlos
dc.contributor.authorHu, Juejun
dc.contributor.authorHopkins, Patrick E
dc.date.accessioned2022-05-19T18:04:31Z
dc.date.available2022-05-19T18:04:31Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142619
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Integrated nanophotonics is an emerging research direction that has attracted great interests for technologies ranging from classical to quantum computing. One of the key-components in the development of nanophotonic circuits is the phase-change unit that undergoes a solid-state phase transformation upon thermal excitation. The quaternary alloy, Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te, is one of the most promising material candidates for application in photonic circuits due to its broadband transparency and large optical contrast in the infrared spectrum. Here, we investigate the thermal properties of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te and show that upon substituting tellurium with selenium, the thermal transport transitions from an electron dominated to a phonon dominated regime. By implementing an ultrafast mid-infrared pump-probe spectroscopy technique that allows for direct monitoring of electronic and vibrational energy carrier lifetimes in these materials, we find that this reduction in thermal conductivity is a result of a drastic change in electronic lifetimes of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te, leading to a transition from an electron-dominated to a phonon-dominated thermal transport mechanism upon selenium substitution. In addition to thermal conductivity measurements, we provide an extensive study on the thermophysical properties of Ge<jats:sub>2</jats:sub>Sb<jats:sub>2</jats:sub>Se<jats:sub>4</jats:sub>Te thin films such as thermal boundary conductance, specific heat, and sound speed from room temperature to 400 °C across varying thicknesses.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-021-27121-Xen_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0en_US
dc.sourceNatureen_US
dc.titleSuppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Teen_US
dc.typeArticleen_US
dc.identifier.citationAryana, Kiumars, Zhang, Yifei, Tomko, John A, Hoque, Md Shafkat Bin, Hoglund, Eric R et al. 2021. "Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te." Nature Communications, 12 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-05-19T17:55:45Z
dspace.orderedauthorsAryana, K; Zhang, Y; Tomko, JA; Hoque, MSB; Hoglund, ER; Olson, DH; Nag, J; Read, JC; Ríos, C; Hu, J; Hopkins, PEen_US
dspace.date.submission2022-05-19T17:55:48Z
mit.journal.volume12en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record