MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineering Purely Nonlinear Coupling between Superconducting Qubits Using a Quarton

Author(s)
Ye, Yufeng; Peng, Kaidong; Naghiloo, Mahdi; Cunningham, Gregory; O’Brien, Kevin P
Thumbnail
DownloadPublished version (642.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Strong nonlinear coupling of superconducting qubits and/or photons is a critical building block for quantum information processing. Because of the perturbative nature of the Josephson nonlinearity, linear coupling is often used in the dispersive regime to approximate nonlinear coupling. However, this dispersive coupling is weak and the underlying linear coupling mixes the local modes, which, for example, distributes unwanted self-Kerr nonlinearity to photon modes. Here, we use the quarton to yield purely nonlinear coupling between two linearly decoupled transmon qubits. The quarton's zero ϕ^{2} potential enables an ultrastrong gigahertz-level cross-Kerr coupling, which is an order of magnitude stronger compared to existing schemes, and the quarton's positive ϕ^{4} potential can cancel the negative self-Kerr nonlinearity of qubits to linearize them into resonators. This ultrastrong cross-Kerr coupling between bare modes of qubit-qubit, qubit-photon, and even photon-photon is ideal for applications such as single microwave photon detection, ultrafast two-qubit gates, and readout.
Date issued
2021
URI
https://hdl.handle.net/1721.1/143807
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Physical Review Letters
Publisher
American Physical Society (APS)
Citation
Ye, Yufeng, Peng, Kaidong, Naghiloo, Mahdi, Cunningham, Gregory and O’Brien, Kevin P. 2021. "Engineering Purely Nonlinear Coupling between Superconducting Qubits Using a Quarton." Physical Review Letters, 127 (5).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.