Show simple item record

dc.contributor.authorYe, Yufeng
dc.contributor.authorPeng, Kaidong
dc.contributor.authorNaghiloo, Mahdi
dc.contributor.authorCunningham, Gregory
dc.contributor.authorO’Brien, Kevin P
dc.date.accessioned2022-07-18T15:28:43Z
dc.date.available2022-07-18T15:28:43Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143807
dc.description.abstractStrong nonlinear coupling of superconducting qubits and/or photons is a critical building block for quantum information processing. Because of the perturbative nature of the Josephson nonlinearity, linear coupling is often used in the dispersive regime to approximate nonlinear coupling. However, this dispersive coupling is weak and the underlying linear coupling mixes the local modes, which, for example, distributes unwanted self-Kerr nonlinearity to photon modes. Here, we use the quarton to yield purely nonlinear coupling between two linearly decoupled transmon qubits. The quarton's zero ϕ^{2} potential enables an ultrastrong gigahertz-level cross-Kerr coupling, which is an order of magnitude stronger compared to existing schemes, and the quarton's positive ϕ^{4} potential can cancel the negative self-Kerr nonlinearity of qubits to linearize them into resonators. This ultrastrong cross-Kerr coupling between bare modes of qubit-qubit, qubit-photon, and even photon-photon is ideal for applications such as single microwave photon detection, ultrafast two-qubit gates, and readout.en_US
dc.language.isoen
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionof10.1103/PHYSREVLETT.127.050502en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAPSen_US
dc.titleEngineering Purely Nonlinear Coupling between Superconducting Qubits Using a Quartonen_US
dc.typeArticleen_US
dc.identifier.citationYe, Yufeng, Peng, Kaidong, Naghiloo, Mahdi, Cunningham, Gregory and O’Brien, Kevin P. 2021. "Engineering Purely Nonlinear Coupling between Superconducting Qubits Using a Quarton." Physical Review Letters, 127 (5).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-07-18T15:22:10Z
dspace.orderedauthorsYe, Y; Peng, K; Naghiloo, M; Cunningham, G; O’Brien, KPen_US
dspace.date.submission2022-07-18T15:22:12Z
mit.journal.volume127en_US
mit.journal.issue5en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record