MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Better Distance Preservers and Additive Spanners

Author(s)
Bodwin, Greg; Williams, Virginia Vassilevska
Thumbnail
DownloadAccepted version (322.0Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:p> We study two popular ways to sketch the shortest path distances of an input graph. The first is <jats:italic>distance preservers</jats:italic> , which are sparse subgraphs that agree with the distances of the original graph on a given set of demand pairs. Prior work on distance preservers has exploited only a simple structural property of shortest paths, called <jats:italic>consistency</jats:italic> , stating that one can break shortest path ties such that no two paths intersect, split apart, and then intersect again later. We prove that consistency alone is not enough to understand distance preservers, by showing both a lower bound on the power of consistency and a new general upper bound that polynomially surpasses it. Specifically, our new upper bound is that any <jats:italic>p</jats:italic> demand pairs in an <jats:italic>n</jats:italic> -node undirected unweighted graph have a distance preserver on O( <jats:italic>n</jats:italic> <jats:sup>2/3</jats:sup> <jats:italic>p</jats:italic> <jats:sup>2/3</jats:sup> + <jats:italic>np</jats:italic> <jats:sup>1/3</jats:sup> edges. We leave a conjecture that the right bound is <jats:italic>O</jats:italic> ( <jats:italic>n</jats:italic> <jats:sup>2/3</jats:sup> <jats:italic>p</jats:italic> <jats:sup>2/3</jats:sup> + <jats:italic>n</jats:italic> ) or better. </jats:p> <jats:p> The second part of this paper leverages these distance preservers in a new construction of <jats:italic>additive spanners</jats:italic> , which are subgraphs that preserve all pairwise distances up to an additive error function. We give improved error bounds for spanners with relatively few edges; for example, we prove that all graphs have spanners on <jats:italic>O(n)</jats:italic> edges with + <jats:italic>O</jats:italic> ( <jats:italic>n</jats:italic> <jats:sup>3/7 + ε</jats:sup> ) error. Our construction can be viewed as an extension of the popular path-buying framework to clusters of larger radii. </jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/143945
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
ACM Transactions on Algorithms
Publisher
Association for Computing Machinery (ACM)
Citation
Bodwin, Greg and Williams, Virginia Vassilevska. 2021. "Better Distance Preservers and Additive Spanners." ACM Transactions on Algorithms, 17 (4).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.