Show simple item record

dc.contributor.authorBodwin, Greg
dc.contributor.authorWilliams, Virginia Vassilevska
dc.date.accessioned2022-07-21T17:13:17Z
dc.date.available2022-07-21T17:13:17Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/143945
dc.description.abstract<jats:p> We study two popular ways to sketch the shortest path distances of an input graph. The first is <jats:italic>distance preservers</jats:italic> , which are sparse subgraphs that agree with the distances of the original graph on a given set of demand pairs. Prior work on distance preservers has exploited only a simple structural property of shortest paths, called <jats:italic>consistency</jats:italic> , stating that one can break shortest path ties such that no two paths intersect, split apart, and then intersect again later. We prove that consistency alone is not enough to understand distance preservers, by showing both a lower bound on the power of consistency and a new general upper bound that polynomially surpasses it. Specifically, our new upper bound is that any <jats:italic>p</jats:italic> demand pairs in an <jats:italic>n</jats:italic> -node undirected unweighted graph have a distance preserver on O( <jats:italic>n</jats:italic> <jats:sup>2/3</jats:sup> <jats:italic>p</jats:italic> <jats:sup>2/3</jats:sup> + <jats:italic>np</jats:italic> <jats:sup>1/3</jats:sup> edges. We leave a conjecture that the right bound is <jats:italic>O</jats:italic> ( <jats:italic>n</jats:italic> <jats:sup>2/3</jats:sup> <jats:italic>p</jats:italic> <jats:sup>2/3</jats:sup> + <jats:italic>n</jats:italic> ) or better. </jats:p> <jats:p> The second part of this paper leverages these distance preservers in a new construction of <jats:italic>additive spanners</jats:italic> , which are subgraphs that preserve all pairwise distances up to an additive error function. We give improved error bounds for spanners with relatively few edges; for example, we prove that all graphs have spanners on <jats:italic>O(n)</jats:italic> edges with + <jats:italic>O</jats:italic> ( <jats:italic>n</jats:italic> <jats:sup>3/7 + ε</jats:sup> ) error. Our construction can be viewed as an extension of the popular path-buying framework to clusters of larger radii. </jats:p>en_US
dc.language.isoen
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionof10.1145/3490147en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleBetter Distance Preservers and Additive Spannersen_US
dc.typeArticleen_US
dc.identifier.citationBodwin, Greg and Williams, Virginia Vassilevska. 2021. "Better Distance Preservers and Additive Spanners." ACM Transactions on Algorithms, 17 (4).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalACM Transactions on Algorithmsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-07-21T17:03:31Z
dspace.orderedauthorsBodwin, G; Williams, VVen_US
dspace.date.submission2022-07-21T17:03:32Z
mit.journal.volume17en_US
mit.journal.issue4en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record