Show simple item record

dc.contributor.authorDong, Mark
dc.contributor.authorClark, Genevieve
dc.contributor.authorLeenheer, Andrew J
dc.contributor.authorZimmermann, Matthew
dc.contributor.authorDominguez, Daniel
dc.contributor.authorMenssen, Adrian J
dc.contributor.authorHeim, David
dc.contributor.authorGilbert, Gerald
dc.contributor.authorEnglund, Dirk
dc.contributor.authorEichenfield, Matt
dc.date.accessioned2022-07-25T17:20:59Z
dc.date.available2022-07-25T17:20:59Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/144031
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Recent advances in photonic integrated circuits have enabled a new generation of programmable Mach–Zehnder meshes (MZMs) realized by using cascaded Mach–Zehnder interferometers capable of universal linear-optical transformations on <jats:italic>N</jats:italic> input/output optical modes. MZMs serve critical functions in photonic quantum information processing, quantum-enhanced sensor networks, machine learning and other applications. However, MZM implementations reported to date rely on thermo-optic phase shifters, which limit applications due to slow response times and high power consumption. Here we introduce a large-scale MZM platform made in a 200 mm complementary metal–oxide–semiconductor foundry, which uses aluminium nitride piezo-optomechanical actuators coupled to silicon nitride waveguides, enabling low-loss propagation with phase modulation at greater than 100 MHz in the visible–near-infrared wavelengths. Moreover, the vanishingly low hold-power consumption of the piezo-actuators enables these photonic integrated circuits to operate at cryogenic temperatures, paving the way for a fully integrated device architecture for a range of quantum applications.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41566-021-00903-Xen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleHigh-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architectureen_US
dc.typeArticleen_US
dc.identifier.citationDong, Mark, Clark, Genevieve, Leenheer, Andrew J, Zimmermann, Matthew, Dominguez, Daniel et al. 2022. "High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture." Nature Photonics, 16 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.relation.journalNature Photonicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-07-25T17:15:52Z
dspace.orderedauthorsDong, M; Clark, G; Leenheer, AJ; Zimmermann, M; Dominguez, D; Menssen, AJ; Heim, D; Gilbert, G; Englund, D; Eichenfield, Men_US
dspace.date.submission2022-07-25T17:15:55Z
mit.journal.volume16en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record