dc.contributor.author | Dong, Mark | |
dc.contributor.author | Clark, Genevieve | |
dc.contributor.author | Leenheer, Andrew J | |
dc.contributor.author | Zimmermann, Matthew | |
dc.contributor.author | Dominguez, Daniel | |
dc.contributor.author | Menssen, Adrian J | |
dc.contributor.author | Heim, David | |
dc.contributor.author | Gilbert, Gerald | |
dc.contributor.author | Englund, Dirk | |
dc.contributor.author | Eichenfield, Matt | |
dc.date.accessioned | 2022-07-25T17:20:59Z | |
dc.date.available | 2022-07-25T17:20:59Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/144031 | |
dc.description.abstract | <jats:title>Abstract</jats:title><jats:p>Recent advances in photonic integrated circuits have enabled a new generation of programmable Mach–Zehnder meshes (MZMs) realized by using cascaded Mach–Zehnder interferometers capable of universal linear-optical transformations on <jats:italic>N</jats:italic> input/output optical modes. MZMs serve critical functions in photonic quantum information processing, quantum-enhanced sensor networks, machine learning and other applications. However, MZM implementations reported to date rely on thermo-optic phase shifters, which limit applications due to slow response times and high power consumption. Here we introduce a large-scale MZM platform made in a 200 mm complementary metal–oxide–semiconductor foundry, which uses aluminium nitride piezo-optomechanical actuators coupled to silicon nitride waveguides, enabling low-loss propagation with phase modulation at greater than 100 MHz in the visible–near-infrared wavelengths. Moreover, the vanishingly low hold-power consumption of the piezo-actuators enables these photonic integrated circuits to operate at cryogenic temperatures, paving the way for a fully integrated device architecture for a range of quantum applications.</jats:p> | en_US |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media LLC | en_US |
dc.relation.isversionof | 10.1038/S41566-021-00903-X | en_US |
dc.rights | Creative Commons Attribution 4.0 International license | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Nature | en_US |
dc.title | High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Dong, Mark, Clark, Genevieve, Leenheer, Andrew J, Zimmermann, Matthew, Dominguez, Daniel et al. 2022. "High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture." Nature Photonics, 16 (1). | |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | |
dc.relation.journal | Nature Photonics | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-07-25T17:15:52Z | |
dspace.orderedauthors | Dong, M; Clark, G; Leenheer, AJ; Zimmermann, M; Dominguez, D; Menssen, AJ; Heim, D; Gilbert, G; Englund, D; Eichenfield, M | en_US |
dspace.date.submission | 2022-07-25T17:15:55Z | |
mit.journal.volume | 16 | en_US |
mit.journal.issue | 1 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |