Show simple item record

dc.contributor.authorDey, Santanu S
dc.contributor.authorMazumder, Rahul
dc.contributor.authorWang, Guanyi
dc.date.accessioned2022-08-04T15:19:51Z
dc.date.available2022-08-04T15:19:51Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/144219
dc.description.abstract<jats:p> Dual Bounds of Sparse Principal Component Analysis </jats:p><jats:p> Sparse principal component analysis (PCA) is a widely used dimensionality reduction tool in machine learning and statistics. Compared with PCA, sparse PCA enhances the interpretability by incorporating a sparsity constraint. However, unlike PCA, conventional heuristics for sparse PCA cannot guarantee the qualities of obtained primal feasible solutions via associated dual bounds in a tractable fashion without underlying statistical assumptions. In “Using L1-Relaxation and Integer Programming to Obtain Dual Bounds for Sparse PCA,” Santanu S. Dey, Rahul Mazumder, and Guanyi Wang present a convex integer programming (IP) framework of sparse PCA to derive dual bounds. They show the worst-case results on the quality of the dual bounds provided by the convex IP. Moreover, the authors empirically illustrate that the proposed convex IP framework outperforms existing sparse PCA methods of finding dual bounds. </jats:p>en_US
dc.language.isoen
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)en_US
dc.relation.isversionof10.1287/OPRE.2021.2153en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleUsing ℓ1-Relaxation and Integer Programming to Obtain Dual Bounds for Sparse PCAen_US
dc.typeArticleen_US
dc.identifier.citationDey, Santanu S, Mazumder, Rahul and Wang, Guanyi. 2021. "Using ℓ1-Relaxation and Integer Programming to Obtain Dual Bounds for Sparse PCA." Operations Research, 70 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.relation.journalOperations Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-08-04T15:15:41Z
dspace.orderedauthorsDey, SS; Mazumder, R; Wang, Gen_US
dspace.date.submission2022-08-04T15:15:42Z
mit.journal.volume70en_US
mit.journal.issue3en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record