MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Elucidating proximity magnetism through polarized neutron reflectometry and machine learning

Author(s)
Andrejevic, Nina; Chen, Zhantao; Nguyen, Thanh; Fan, Leon; Heiberger, Henry; Zhou, Ling-Jie; Zhao, Yi-Fan; Chang, Cui-Zu; Grutter, Alexander; Li, Mingda; ... Show more Show less
Thumbnail
DownloadPublished version (2.875Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:p> Polarized neutron reflectometry is a powerful technique to interrogate the structures of multilayered magnetic materials with depth sensitivity and nanometer resolution. However, reflectometry profiles often inhabit a complicated objective function landscape using traditional fitting methods, posing a significant challenge for parameter retrieval. In this work, we develop a data-driven framework to recover the sample parameters from polarized neutron reflectometry data with minimal user intervention. We train a variational autoencoder to map reflectometry profiles with moderate experimental noise to an interpretable, low-dimensional space from which sample parameters can be extracted with high resolution. We apply our method to recover the scattering length density profiles of the topological insulator–ferromagnetic insulator heterostructure Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>/EuS exhibiting proximity magnetism in good agreement with the results of conventional fitting. We further analyze a more challenging reflectometry profile of the topological insulator–antiferromagnet heterostructure (Bi,Sb)<jats:sub>2</jats:sub>Te<jats:sub>3</jats:sub>/Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and identify possible interfacial proximity magnetism in this material. We anticipate that the framework developed here can be applied to resolve hidden interfacial phenomena in a broad range of layered systems. </jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/145472
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Applied Physics Reviews
Publisher
AIP Publishing
Citation
Andrejevic, Nina, Chen, Zhantao, Nguyen, Thanh, Fan, Leon, Heiberger, Henry et al. 2022. "Elucidating proximity magnetism through polarized neutron reflectometry and machine learning." Applied Physics Reviews, 9 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.