MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pure quark and gluon observables in collinear drop

Author(s)
Stewart, Iain W.; Yao, Xiaojun
Thumbnail
Download13130_2022_Article_19232.pdf (1.098Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We construct a class of pure quark and gluon observables by using the collinear drop grooming technique. The construction is based on linear combinations of multiple cumulative distributions of the jet mass in collinear drop, whose specific weights are fully predicted perturbatively. This yields observables which obtain their values purely from quarks (or purely from gluons) in a wide region of phase space. We demonstrate this by showing that these observables are effective in two phase space regions, one dominated by perturbative resummation and one dominated by nonperturbative effects. The nonperturbative effects are included using shape functions which only appear as a common factor in the linear combinations constructed. We test this construction using a numerical analysis with next-to-leading logarithmic resummation and various shape function models, as well as analyzing these observables with Pythia and Vincia. Choices for the collinear drop parameters are optimized for experimental use.
Date issued
2022-09-15
URI
https://hdl.handle.net/1721.1/145478
Department
Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Center for Theoretical Physics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2022 Sep 15;2022(9):120
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.