MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sasaki–Einstein metrics and K–stability

Author(s)
Collins, Tristan; Székelyhidi, Gábor
Thumbnail
DownloadSubmitted version (592.9Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019, Mathematical Sciences Publishers. All rights reserved. We show that a polarized affine variety with an isolated singularity admits a Ricci flat Kähler cone metric if and only if it is K–stable. This generalizes the Chen–Donaldson– Sun solution of the Yau–Tian–Donaldson conjecture to Kähler cones, or equivalently, Sasakian manifolds. As an application we show that the five-sphere admits infinitely many families of Sasaki–Einstein metrics.
Date issued
2019
URI
https://hdl.handle.net/1721.1/145629
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Geometry and Topology
Publisher
Mathematical Sciences Publishers
Citation
Collins, Tristan and Székelyhidi, Gábor. 2019. "Sasaki–Einstein metrics and K–stability." Geometry and Topology, 23 (3).
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.