Show simple item record

dc.contributor.authorCollins, Tristan
dc.contributor.authorSzékelyhidi, Gábor
dc.date.accessioned2022-09-30T16:44:31Z
dc.date.available2022-09-30T16:44:31Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/145629
dc.description.abstract© 2019, Mathematical Sciences Publishers. All rights reserved. We show that a polarized affine variety with an isolated singularity admits a Ricci flat Kähler cone metric if and only if it is K–stable. This generalizes the Chen–Donaldson– Sun solution of the Yau–Tian–Donaldson conjecture to Kähler cones, or equivalently, Sasakian manifolds. As an application we show that the five-sphere admits infinitely many families of Sasaki–Einstein metrics.en_US
dc.language.isoen
dc.publisherMathematical Sciences Publishersen_US
dc.relation.isversionof10.2140/GT.2019.23.1339en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSasaki–Einstein metrics and K–stabilityen_US
dc.typeArticleen_US
dc.identifier.citationCollins, Tristan and Székelyhidi, Gábor. 2019. "Sasaki–Einstein metrics and K–stability." Geometry and Topology, 23 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalGeometry and Topologyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-09-30T16:42:11Z
dspace.orderedauthorsCollins, T; Székelyhidi, Gen_US
dspace.date.submission2022-09-30T16:42:12Z
mit.journal.volume23en_US
mit.journal.issue3en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record