MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Endoscopic decompositions and the Hausel–Thaddeus conjecture

Author(s)
Maulik, Davesh; Shen, Junliang
Thumbnail
DownloadPublished version (713.1Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>We construct natural operators connecting the cohomology of the moduli spaces of stable Higgs bundles with different ranks and genera which, after numerical specialisation, recover the topological mirror symmetry conjecture of Hausel and Thaddeus concerning <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S205050862100007X_inline1.png" /> <jats:tex-math>$\mathrm {SL}_n$</jats:tex-math> </jats:alternatives> </jats:inline-formula>- and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S205050862100007X_inline2.png" /> <jats:tex-math>$\mathrm {PGL}_n$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Higgs bundles. This provides a complete description of the cohomology of the moduli space of stable <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S205050862100007X_inline3.png" /> <jats:tex-math>$\mathrm {SL}_n$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Higgs bundles in terms of the tautological classes, and gives a new proof of the Hausel–Thaddeus conjecture, which was also proven recently by Gröchenig, Wyss and Ziegler via <jats:italic>p</jats:italic>-adic integration.</jats:p> <jats:p>Our method is to relate the decomposition theorem for the Hitchin fibration, using vanishing cycle functors, to the decomposition theorem for the twisted Hitchin fibration, whose supports are simpler.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/145786
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Forum of Mathematics, Pi
Publisher
Cambridge University Press (CUP)
Citation
Maulik, Davesh and Shen, Junliang. 2021. "Endoscopic decompositions and the Hausel–Thaddeus conjecture." Forum of Mathematics, Pi, 9.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.