Show simple item record

dc.contributor.authorMaulik, Davesh
dc.contributor.authorShen, Junliang
dc.date.accessioned2022-10-12T13:47:17Z
dc.date.available2022-10-12T13:47:17Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/145786
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>We construct natural operators connecting the cohomology of the moduli spaces of stable Higgs bundles with different ranks and genera which, after numerical specialisation, recover the topological mirror symmetry conjecture of Hausel and Thaddeus concerning <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S205050862100007X_inline1.png" /> <jats:tex-math>$\mathrm {SL}_n$</jats:tex-math> </jats:alternatives> </jats:inline-formula>- and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S205050862100007X_inline2.png" /> <jats:tex-math>$\mathrm {PGL}_n$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Higgs bundles. This provides a complete description of the cohomology of the moduli space of stable <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S205050862100007X_inline3.png" /> <jats:tex-math>$\mathrm {SL}_n$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Higgs bundles in terms of the tautological classes, and gives a new proof of the Hausel–Thaddeus conjecture, which was also proven recently by Gröchenig, Wyss and Ziegler via <jats:italic>p</jats:italic>-adic integration.</jats:p> <jats:p>Our method is to relate the decomposition theorem for the Hitchin fibration, using vanishing cycle functors, to the decomposition theorem for the twisted Hitchin fibration, whose supports are simpler.</jats:p>en_US
dc.language.isoen
dc.publisherCambridge University Press (CUP)en_US
dc.relation.isversionof10.1017/fmp.2021.7en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceCambridge University Pressen_US
dc.titleEndoscopic decompositions and the Hausel–Thaddeus conjectureen_US
dc.typeArticleen_US
dc.identifier.citationMaulik, Davesh and Shen, Junliang. 2021. "Endoscopic decompositions and the Hausel–Thaddeus conjecture." Forum of Mathematics, Pi, 9.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalForum of Mathematics, Pien_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-12T13:42:40Z
dspace.orderedauthorsMaulik, D; Shen, Jen_US
dspace.date.submission2022-10-12T13:42:42Z
mit.journal.volume9en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record