Show simple item record

dc.contributor.authorHazła, J
dc.contributor.authorHolenstein, T
dc.contributor.authorMossel, E
dc.date.accessioned2022-10-12T18:30:07Z
dc.date.available2022-10-12T18:30:07Z
dc.date.issued2016-09-01
dc.identifier.urihttps://hdl.handle.net/1721.1/145808
dc.description.abstractLet Ρ be a probability distribution over a finite alphabet Ωℓ with all ℓ marginals equal. Let X(1), . . . , X(ℓ), X(j) = (X(j)1 , . . . , X(j)n ) be random vectors such that for every coordinate i ϵ [n] the tuples (X(i)1 , . . . , X(ℓ)i ) are i.i.d. according to Ρ. The question we address is: does there exist a function cΡ() independent of n such that for every f :Ωn → [0, 1] with E[f(X(1))] = μ > 0: E Φ Yj=1 f(X(j)) # ≥ cΡ(μ) > 0 ? We settle the question for ℓ = 2 and when ℓ > 2 and P has bounded correlation ρ(P) < 1.en_US
dc.language.isoen
dc.relation.isversionof10.4230/LIPIcs.APPROX-RANDOM.2016.34en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceDROPSen_US
dc.titleLower bounds on same-set inner product in correlated spacesen_US
dc.typeArticleen_US
dc.identifier.citationLower Bounds on Same-Set Inner Product in Correlated Spaces. 19th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2016 and the 20th International Workshop on Randomization and Computation, RANDOM 2016, September 7, 2016 - September 9, 2016. 2016. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalLeibniz International Proceedings in Informatics, LIPIcsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-10-12T18:05:34Z
dspace.orderedauthorsHazła, J; Holenstein, T; Mossel, Een_US
dspace.date.submission2022-10-12T18:05:35Z
mit.journal.volume60en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record