dc.contributor.author | Hazła, J | |
dc.contributor.author | Holenstein, T | |
dc.contributor.author | Mossel, E | |
dc.date.accessioned | 2022-10-12T18:30:07Z | |
dc.date.available | 2022-10-12T18:30:07Z | |
dc.date.issued | 2016-09-01 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/145808 | |
dc.description.abstract | Let Ρ be a probability distribution over a finite alphabet Ωℓ with all ℓ marginals equal. Let X(1), . . . , X(ℓ), X(j) = (X(j)1 , . . . , X(j)n ) be random vectors such that for every coordinate i ϵ [n] the tuples (X(i)1 , . . . , X(ℓ)i ) are i.i.d. according to Ρ. The question we address is: does there exist a function cΡ() independent of n such that for every f :Ωn → [0, 1] with E[f(X(1))] = μ > 0: E Φ Yj=1 f(X(j)) # ≥ cΡ(μ) > 0 ? We settle the question for ℓ = 2 and when ℓ > 2 and P has bounded correlation ρ(P) < 1. | en_US |
dc.language.iso | en | |
dc.relation.isversionof | 10.4230/LIPIcs.APPROX-RANDOM.2016.34 | en_US |
dc.rights | Creative Commons Attribution 4.0 International license | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | DROPS | en_US |
dc.title | Lower bounds on same-set inner product in correlated spaces | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Lower Bounds on Same-Set Inner Product in Correlated Spaces. 19th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2016 and the 20th International Workshop on Randomization and Computation, RANDOM 2016, September 7, 2016 - September 9, 2016. 2016. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | Leibniz International Proceedings in Informatics, LIPIcs | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2022-10-12T18:05:34Z | |
dspace.orderedauthors | Hazła, J; Holenstein, T; Mossel, E | en_US |
dspace.date.submission | 2022-10-12T18:05:35Z | |
mit.journal.volume | 60 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |