MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Motivic decompositions for the Hilbert scheme of points of a K3 surface

Author(s)
Neguţ, Andrei; Oberdieck, Georg; Yin, Qizheng
Thumbnail
DownloadPublished version (435.3Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>We construct an explicit, multiplicative Chow–Künneth decomposition for the Hilbert scheme of points of a K3 surface. We further refine this decomposition with respect to the action of the Looijenga–Lunts–Verbitsky Lie algebra.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/145816
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal für die reine und angewandte Mathematik
Publisher
Walter de Gruyter GmbH
Citation
Neguţ, Andrei, Oberdieck, Georg and Yin, Qizheng. 2021. "Motivic decompositions for the Hilbert scheme of points of a K3 surface." Journal für die reine und angewandte Mathematik, 2021 (778).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.