MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the P = W conjecture for $$SL_n$$ S L n

Author(s)
de Cataldo, Mark A.; Maulik, Davesh; Shen, Junliang
Thumbnail
Download29_2022_803_ReferencePDF.pdf (247.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Let p be a prime number. We prove that the $$P=W$$ P = W conjecture for $$\mathrm {SL}_p$$ SL p is equivalent to the $$P=W$$ P = W conjecture for $$\mathrm {GL}_p$$ GL p . As a consequence, we verify the $$P=W$$ P = W conjecture for genus 2 and $$\mathrm {SL}_p$$ SL p . For the proof, we compute the perverse filtration and the weight filtration for the variant cohomology associated with the $$\mathrm {SL}_p$$ SL p -Hitchin moduli space and the $$\mathrm {SL}_p$$ SL p -twisted character variety, relying on Gröchenig–Wyss–Ziegler’s recent proof of the topological mirror conjecture by Hausel–Thaddeus. Finally we discuss obstructions of studying the cohomology of the $$\mathrm {SL}_n$$ SL n -Hitchin moduli space via compact hyper-Kähler manifolds.
Date issued
2022-10-13
URI
https://hdl.handle.net/1721.1/145826
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer International Publishing
Citation
Selecta Mathematica. 2022 Oct 13;28(5):90
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.